Saturday, July 20, 2019
Enzymes Essay example -- essays research papers
The structure of the enzyme is mainly dependent on the active site and variable groups. Extreme temperatures or extreme pHs can alter the structure of an enzyme. Enzymes function to lower the activation energy to break the bonds. They achieve this by putting stress and pressure on the bonds or creating a microenvironment for the substrate. Enzymes are regulated by inhibitors or activators and can be inhibited by the products of the reaction, called feedback inhibition. Enzymes are catalytic proteins; therefore they change the rate of a reaction without being consumed. This means that once and enzyme does its job it can still perform the same function as it did before. Organic catalysts change the rate of a reaction without being permanently changed. Enzymes are polypeptides that are made up of amino acids. Enzyme variable groups that are exposed are the places in which biological processes take place. These side chains, commonly called "R groups," make up the active site and catalyze the conversion of the substrate to make a product. These side chains are often called variable groups because they are often what determines the kind of enzyme it is, therefore determining what substrates it will bond with. A change in temperature or a fluctuation in pH can alter the enzymeââ¬â¢s structure. Anent temperature the alteration of the enzymes occurs when the temperature is very high and the enzyme denatures and is unable to perform the desired task. The temperature is so high that the active site of the enzyme changes and it is unable to bond with substrates. The pH at which different enzymes denature differs from enzyme to enzyme. Similar to too high a temperature, if a specific enzyme is at a pH at which the active site changes, the enzyme is unable to function. This illustrates how the structure of an enzyme is vital to its proper functioning. Allosteric enzymes differ in structure than the previous enzymes addressed. The extreme temperature and pH rules, however, still apply. Most allosteric enzymes are composed of two or more sub units, each having its own active site. The allosteric enzymes are constantly changing between two conformational states, active and inactive states anent functioning. This oscillation helps in the regulation of the enzymes. Enzymes function as organic catalysts, meaning that they are organic molecules (proteins) that change ... ...r to the allosteric site while the enzyme is in the inactive form will impede the ability of the enzyme to function. Cooperativity is when a substrate binds to the active site of an allosteric enzyme thus leaving the enzyme in active form and aiding in the binding of other enzymes to the other active sites of the enzymes. Feedback inhibition occurs when a metabolic pathway is turned off by the end product of the reaction. For example, the end product of a specific reaction may be an allosteric inhibitor to the specific enzyme that makes the product; this prevents the enzyme to make more products when they are not needed. As the product accumulates the product slows down the synthesis or products. In conclusion, the structure of the enzyme is mainly dependent on the active site and variable groups. Extreme temperatures or extreme pHs can alter the structure of an enzyme. Enzymes function to lower the activation energy to break the bonds. They achieve this by putting stress and pressure on the bonds or creating a microenvironment for the substrate. Enzymes are regulated by inhibitors or activators and can be inhibited by the products of the reaction, called feedback inhibition. Enzymes Essay example -- essays research papers The structure of the enzyme is mainly dependent on the active site and variable groups. Extreme temperatures or extreme pHs can alter the structure of an enzyme. Enzymes function to lower the activation energy to break the bonds. They achieve this by putting stress and pressure on the bonds or creating a microenvironment for the substrate. Enzymes are regulated by inhibitors or activators and can be inhibited by the products of the reaction, called feedback inhibition. Enzymes are catalytic proteins; therefore they change the rate of a reaction without being consumed. This means that once and enzyme does its job it can still perform the same function as it did before. Organic catalysts change the rate of a reaction without being permanently changed. Enzymes are polypeptides that are made up of amino acids. Enzyme variable groups that are exposed are the places in which biological processes take place. These side chains, commonly called "R groups," make up the active site and catalyze the conversion of the substrate to make a product. These side chains are often called variable groups because they are often what determines the kind of enzyme it is, therefore determining what substrates it will bond with. A change in temperature or a fluctuation in pH can alter the enzymeââ¬â¢s structure. Anent temperature the alteration of the enzymes occurs when the temperature is very high and the enzyme denatures and is unable to perform the desired task. The temperature is so high that the active site of the enzyme changes and it is unable to bond with substrates. The pH at which different enzymes denature differs from enzyme to enzyme. Similar to too high a temperature, if a specific enzyme is at a pH at which the active site changes, the enzyme is unable to function. This illustrates how the structure of an enzyme is vital to its proper functioning. Allosteric enzymes differ in structure than the previous enzymes addressed. The extreme temperature and pH rules, however, still apply. Most allosteric enzymes are composed of two or more sub units, each having its own active site. The allosteric enzymes are constantly changing between two conformational states, active and inactive states anent functioning. This oscillation helps in the regulation of the enzymes. Enzymes function as organic catalysts, meaning that they are organic molecules (proteins) that change ... ...r to the allosteric site while the enzyme is in the inactive form will impede the ability of the enzyme to function. Cooperativity is when a substrate binds to the active site of an allosteric enzyme thus leaving the enzyme in active form and aiding in the binding of other enzymes to the other active sites of the enzymes. Feedback inhibition occurs when a metabolic pathway is turned off by the end product of the reaction. For example, the end product of a specific reaction may be an allosteric inhibitor to the specific enzyme that makes the product; this prevents the enzyme to make more products when they are not needed. As the product accumulates the product slows down the synthesis or products. In conclusion, the structure of the enzyme is mainly dependent on the active site and variable groups. Extreme temperatures or extreme pHs can alter the structure of an enzyme. Enzymes function to lower the activation energy to break the bonds. They achieve this by putting stress and pressure on the bonds or creating a microenvironment for the substrate. Enzymes are regulated by inhibitors or activators and can be inhibited by the products of the reaction, called feedback inhibition.
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.